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ParameterExtraction and Correction for
Transmission Lines and Discontinuities Using

the Finite-Difference Time-Domain Method
Mark A. Schamberger, Stevan Kosanovich, and Raj Mittra, Life Fellow, IEEE

Abstract-- The finite-difference time-domain (FDTD) method

is useful for performing broadband characterization of uniform

transmissicm lines and discontinuities. Modeling a geometry often

requires the implementation of an absorbing boundary condition

(ABC), Wlhen this is the case, numerical reflections from the

ABC’s willl add significant error to the calculated transmission

line or scattering (S) parameters. This paper introduces a sim-

ple post-processing algorithm for extracting these parameters
and correcting for numerical reflection error. Furthermore, thk

method is shown to have a unique relationship to Prony’s method.

Practical a~ppiication and limitations of this technique are also
discussed. Finally, the impedance and propagation constant of a

miscrostrip tine are calculated using this method.

I. INTRODUCTION

A PPLIICATION of the finite-difference time-domain

(FDTD) method [1] to calculate transmission line and

scattering (S) parameters provides broadband frequency

information in a single simulation. This paper first focuses

on analysis of a uniform cross-section line, and then extends

the approach to computing S-parameters for an arbitrary

discontinuity, Modeling a uniform line in the time-domain

involves creating a two-dimensional (2-D) rectangular mesh

for the transverse cross section and extruding the mesh in the

longitudinal direction, Next, a TEM or quasi-TEM mode is

excited on the structure, The voltage and current along the

line are then calculated from the time-domain fields. Practical

application of this standard technique necessitates the use of an

absorbing boundary condition (ABC). Even if the cross section

is closed (PEC and PMC boundaries only), it is still necessary

to terminate the line with an ABC. Most ABC’s are derived

by making an approximation to an outward-propagating wave

equation using the electromagnetic field data in neighboring

cells around each boundary node. Although this approach

works well, residual reflections do arise from these ABC’s.

This paper utilizes the standard first order Mur ABC [2] due to

its simplicity, reasonable performance, and general acceptance.

The A13C reflections give rise to standing waves on a trans-

mission line, rather than a traveling wave in a single direction.

In order to correct for such errors, it is necessary to separate
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the standing wave into forward and backward traveling wave

components. Other techniques have been suggested in the past

[3]-[4], but are more complicated than the algorithm presented

below, The method used in [3] involves computation of Fourier

series and iterative solution of a nonlinear matrix equation

to calculate the ABC reflection. The approach used in [4]

is similar to the one presented below, but involves matrix

inversion. The method developed here only assumes that the

voltage and current on a transmission line are a super-position

of TEM waves. The reflection is calculated in closed form,

involving no matrix equations. As will be evident, this method

is very general and has direct application to computing S-

parameters.

11, THEORY

The derivation for the error correction is a very straightfor-

ward manipulation of the transmission line equations, Assume

that the voltage and current at any point on a transmission line

are calculated from an FDTD simulation, and then Fourier

transformed into the frequency domain, At any frequency,

these quantities can be represented by the following equation:

f(w) =$. = Clu’ + C.2U-Z. (1)

The variable ~ is either voltage or current, z is distance

along the transmission line, c1 and c.2 are the coefficients for

the positive and negative traveling waves, and u is the base of

the complex wave function, e–~, Sampling at three uniform

points with spacing d on the transmission line produces three

equations in three unknowns, which are u, c1, and C2

.fo=c1+c2 (2a)

$1 = CIJ + c~u-d (2b)

f’2=c@2d + c~u-zd. (2C)

Eliminating c1 and C2 in (2c) and simplifying yields the

following quadratic in Ud

~2d fo+.fzo,d+l =().

fl
(3)

The constant term of one in this equation implies that the

roots are reciprocals of one another. This agrees with physical

intuition since we expect two waves that have mutually
reciprocal wave functions. The two solutions are given in (4)

‘d=(w’@92-1‘4)
0018–9480/96$05 .(Xl @ 1996 IEEE
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Thewave coefficients, cl andcz, can reexpressed in terms

of 71 as follows:

(5a)

(5b)

Note that these two equations yield the same set of coef-

ficients regardless of which root is selected for performing

the calculations. This is evident from the reciprocal nature of

the two roots and the high degree of symmetry in (5a)–(5b).

Note that the data plane for j’. is the phase reference for

the coefficients. Determining a sense of direction (forward

or backward) depends on the propagation constant and the

assumed time convention.

This derivation can now be applied to calculating the

transmission line parameters of an arbitrary uniform line using

the following procedure. First, apply the above procedure

independently to the voltage and current signals at three

regular points on the line. Examination of the sign of the

imaginary part of the exponent determines the direction of

wave propagation. The complex line impedance is given by

the ratio of the voltage to current for the forward traveling

wave, or the negative of this ratio for the backward traveling

wave

(6)

A more accurate criteria for computing impedance is to

take the ratio using the set of voltage and current coefficients

with the larger overall magnitude, and toggle the sign of the

impedance such that the real part is positive. The propagation

constant is somewhat more difficult to extract since It involves

taking the natural log of a complex number. It is easier

to separately calculate the real and imaginary parts of the

complex propagation constant. The attenuation constant is

readily found from the U,d term as follows:

,Y = lRe{lnud}l

d“
(7a)

The absolute value sign makes this calculation independent

of root selection. The phase constant is calculated in a similar

manner as shown below:

(j= lIm{lnud}l + 2T7Z

d“
(7b)

The 2~n term is necefisary to account for the branch cut

of the complex log function. The phase constant is linear with

frequency and zero at dc. The correct value of n, can be tracked

by using an initial value of zero and incrementing it by one

every time the branch cut is crossed. Since the branch cut

for the complex log function occurs at the negative real axis,
crossings can be indicated by a sign change in the imaginary

part of In(u(t ). The direction of the sign change depends on

the root selection. A wave function of the form e–yd crosses

the branch cut from negative to positive imaginary part, while
e+~d crosses from positive to negative. Fortunately, this issue

can usually be ignored by proper selection of the spacing d.

As long as ~~d is bound by O and T, a branch cut is not

encountered. This implies the following constraint on d

(8)

The periodicity of voltage and current along a transmission

line every half wavelength dictates using a maximum d of a

quarter wavelength in order to guarantee a nonsingular system

of equations in (2a)–(2c), Therefore, a proper choice of the

spacing d eliminates the branch cut problem. The optimum

value of d is obviously an eighth of a wavelength. Finally,

the complex propagation constant can then be expressed as

follows:

lRe{lnud}l + ~ lIm{lnud}\
~=

d d“
(9)

The RLGC parameters are readily computed from -y and Z

using the relations

R+jwL=yZ (10a)

G’+ JWc = ~/z. (lOb)

This method is easily extended to the calculation of scat-

tering parameters, since that basically involves breaking a

signal into positive and negative directed wave components.

This avoids running an additional simulation to compute the

incident voltage or current signal.

For an arbitrary IV-port network, one column of an S’-

Matrix can be computed using a single FDTD simulation.

The excitation is applied at a single port in the device. Using

the outlined technique, the incident and reflected signals are

computed at the excited port, as well as the transmitted signals

at the other ports. This is the common approach to calculating

S-parameters. The extraction technique eliminates the need

for an extra FDTD simulation to compute the incident signal.

This efficient procedure is very similar to the one presented in

[4], but note that neither method corrects for reflections from

boundaries when calculating S-parameters. A general method

for performing such corrections is not easily derived, However,

a good approximation utilizing the above technique can be

developed for symmetrical, reciprocal two-port devices. First

consider the following one-port example. The voltage on a

transmission line can be expressed as

where the S and L subscripts refer to the source and load

respectively. Equation (11 ) assumes that the load is at z = O

and the source is at z = –d. Note that the ratio of the

reflected to incident waves is the load reflection coefficient,

and it is independent of source mismatch. This implies that

the extraction procedure outlined above will work exactly

for characterizing uniform transmission lines and one-port

discontinuities. In this case, one imperfect ABC represents

source mismatch, and the other imperfect ABC defines the load

reflection coefficient. This same line of reasoning is applicable

to an arbitrary two-port network as shown in Fig. 1.
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Fig. 1. Generalized two-port network.

First-order approximations for the line voltage at each port

can be expressed as follows:

V1(21)=(1 + 171S11e-271d’ )e-71z’

+ (She ‘2~1d1 (1 + f’l S1le –2-/loll
)

+ I’2S12S21e-271d’ e–272d2)e+71’1 (12a)

rV2(Z2) = ~ol3S21e–~ldl (1 + rlslle–hdl

+ I’2S22e -Z-radz e–72z2
)

r+ Z(I2
~(Szle-71d’17Ze-272 d2)e+’232. (12b)

First-order implies the inclusion of all terms involving

ABC reflection coefficients of order one. Using the outlined

extraction method, the constants in the following generic

representation can be computed:

Vl(zl) = c~e-71z’ -1- c;e+~’z’ (13a)

V2(22) = c~e-72z’ + c;e+72z2. (13b)

Equations (12a)-(12b) and (13a)–(13b) imply the following

conditions on these constants:

Assuming symmetry and reciprocity, the full S-matrix can

be derived from (14a–14b) as shown:

Cfc; 202 — CJC; 201
(15a)Sll = ’22 = (c;)2.e-z~~dlZ02 – (C;)2Z01

+ + –~ldl _c1 C2e c~c~e+y’d’
Slz = Szl = _(c~)ze-z~,’lZo2 – (C~)2ZOl -

(15b)

Although S-parameter calculations are not as susceptible to

ABC reflections as transmission line parameters, this approach

proves to be superior to the standard technique especially for

broadband frequency analysis. Note that a similar procedure

using currents could also be derived. Additionally, more

sophkli cated procedures could be applied to better character-

ize the boundary reflections, thus improving this calibration

procedure.

III. APPLICATION

The above procedure has proven to be simple to implement

in software, has provided fast accurate results, and has general

applicability to similar and more advanced types of problems.

The best way to gain experience with this technique is to

experiment with different ways of performing these calcula-

tions, For example, the impedance can be calculated with the

dominant traveling wave, or from the reflected wave. In this

case, it is not recommended that the reflected wave be used

in the calculation since ratios of small magnitude numbers are

numerically less accurate. Based on detailed investigation, the

following suggestions are offered.

For best results in the time domain, spatially excite the

line with the dominant TEM or quasi-TEM mode as well as

possible. Use a smooth temporal excitation, such as a Gaussian

pulse or Blackinan-Harris window, allowing enough iterations

for the fields to settle to their initial unexcited state. Remove

the inherent half-cell spatial separation between voltage and

current by averaging. Account for the half-time step difference

between E and H by using the appropriate scaling factor

of e~~”’~t12. Before performing a Fourier transform into the

frequency domain, remove any residual dc offset in the voltage

and current time signatures. Since the offset is usually not

constant, subtract a linear approximation to this offset. In other

words, subtract from it a line passing through the first and

last data points. This amounts to rotating the time signature

toward the axis by the arctangent of the slope of the linear

offset. Although this offset is usually quite small, it is a good

practice to remove it [5]. The voltage and current signatures

are ready to be transformed into the frequency domain via

a fast Fourier transform (FIT). Conservative handling of the

time domain data helps ensure a smooth transition into the

frequency domain, and significantly improves results toward

dc.

Next, the wave decomposition algorithm can be applied.

This requires at least three voltage and current samples. If

n 2 3 samples are available, then the linear coefficient in

the quadratic equation (3) can be averaged over the (n – 2)

data triplets. No other modification is necessary, and one only

needs to substitute the averaged coefficient when evaluating

(4). For the purpose of calculating these roots, the current

data usually provides the best results. Using this set of roots,

the coefficients for both the voltage and current waves can be

calculated by using (5a)–(5b). The roots computed from the

voltage are usually noisier than those for current, and once

again, some experimentation is necessary to determine the

better choice. The impedance can then be calculated as the

ratio of the dominant voltage and current wave coefficients

with an appropriate sign adjustment. The propagation constant

is readily calculated from (9), which is independent of the

root selection.

It should be pointed out that the method outlined above

has two practical limitations. At high frequencies, the spacing

d will become greater than a quarter wavelength making the
sYstem of equations (Za)–(zc) potentially ill-conditioned. At

low frequencies, the spacing d becomes small compared to a

wavelength, making the system of equations increasingly ill-
conditioned. Ideally, the sampling points should be equally

spaced within a quarter wavelength at the center frequency of

analysis. An analytical approach can be employed to determine

the bandwidth over which the above calculation is well-

behaved. If bandwidth limitations arise, the simple solution is

to split the frequency band into smaller subbands and select an
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Fig. 2. Microstrip geometry.

appropriate spacing d for each subband. Obviously, the spacing

decreases for each higher frequency band. This algorithmic

clearly capable of handling most any transmission line or dis-

continuity problem at any frequency. Furthermore, this method

works well quite independent of the ABC performance, which

is the most powerful characteristic of the given formulation.

IV. RELATIONSHIP TO PRONY’s METHOD

The equations derived above have a special relationship

to Prony’s method, which is a more general exponential

approximation to a function. The concept behind Prony’s

method is to approximate a function as a sum of complex

exponential as shown below:

Assume that the function j is known at 2n equally spaced

points which can be linearly mapped to the set of integers

ze{o, l,..., 2n – 1}. This data could be used to generate

a nonlinear system of 2n equations; however, it would be

very difficult to solve. Prony’s method simplifies this problem

by solving it in three stages: two linear and one nonlinear.

Substituting the first n data samples into (16) yields the

following linear system of n equations:

If the elements in vector u are available, then vector a is

readily found using a matrix inversion scheme. The vector u

can be solved for as follows. Let the elements in u be the n

roots of the polynomial equation given below:

n—1
Un+rlu -t. ..+n_lu+Tn=o=o. (18)

Another linear system of n equations can be generated using

the 2n data samples and (18). The general form of this system

is as follows:

(
fn-1 fn-2 “ “ “ fo ‘r-l

fn
. . .

“:1 ‘“ ‘)(:’)=-(:1)f2n-2 f2n-3 “.. fn-l Tn

(19)

Each equation in (19) is a linear combination of fz evaluated

at different points. The first equation represents a summation

of rm times f., rm_l times fl, ..., rl times f~–1, and 1 times
fm. Expanding each value of fz using (16), rearranging terms,

o 10 20 30 40 50

Time (ps)

(a)

80
— Point 1
. . . . . . . . pOi”t 2
--- Point 3

60

40

20 t

o

.20Lll, l,ll{ It

o 10 20 30 40 50

Time (ps)

(b)

Fig. 3. Time signatures. (a) Voltage. (b) Current.

and applying (18) indicates that this sum adds to zero, thus

validating the first equation in (19). The other equations behave

likewise. Specifically, these sums add to zero. because each

can be ‘rearranged as follows:

fn+p + jj fn-i+pri
i=l

(20)

The parameter p varies from O to n – 1, specifying one of

the equations in (19). Since each UZ is a root, (20) states that

the last term in the right summation is zero. Vector r can now

be calculated using the data samples and a matrix inversion

scheme. Using a polynomial solver, the roots of (18) can be

computed. As mentioned before, the coefficients can then be

calculated from (17). Prony’s method thus explains how to

derive an n-term exponential approximation to an arbitrary
function. Obviously, a least squares approach can be applied

to the matrix equations (17) and (19) if more than n data

samples are available.

The method presented in this paper is a special case of

Prony’s method for a 2-term (n = 2) exponential approxima-

tion in which the two roots are forced to be reciprocals, For
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Fig. 4. Magnitude spectra. (a) Voltage. (b) Current.

an exact solution (no least squares approximation), a total of

2 * n = 4 samples are required, as shown in (21a)-(21d):

jo=cl+cz (21a)

fl = C1’ul + C2’U2 (21b)

fz = Clu: + C2U; (21C)

fq = Clu: + C2U;. (21d)

The matrix equation for the c vector is given as follows:

(22)

The characteristic equation for u is the generic quadratic

(23):

u2+7-lu+r2=o. (23)

The r vector is given by the following matrix equation:

(i N(3=-(0 (24)

An algebraic solution for (22) through (24) is readily

obtained, and the resulting solutions for r, u, and c are as

follows:

()~1 __
rz — f,-lfof2(?2 >?) (2)

0 50 100 150 200 250 300 350 400

Frequency (GHz)

(b)

Phase spectra. (a) Voltage. (b) Current.

fof3 - flf2

f; - fofz

fz – flf3

f; - fof2

(25)

(26)

/ fl - fouz )

‘k?) (27)

Forcing the roots U1 and uz to be reciprocal is equivalent

to setting rz to 1, since in a quadratic equation the constant

term equals the product of its roots. Setting ~z to 1, allows

for f3 to be solved for in terms of fo,fl, andfz. This
reduces the necessary number of samples from four to three.

Substituting fs into ~1, allOWS rl to be defined in terms of

fo, fl, and fz only. The resulting expression for rl is the
familiar – ( fo + f2)/ fl coefficient from (3). This establishes

the relationship between Prony’s method and the method

introduced in this paper.
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Fig. 6. FDTD and FEM transmission line parameters (a) Impedance. (b)
Propagation constant

In practice, the outlined method yields better results than

Prony’s method for parameter extraction. Prony’s method has

an extra degree of freedom in the sense that the two waves

can have different propagation constants. Physics tells us that

the two waves will be identical, except that they propagate in

opposite directions. Prony ’s method is emphasized here since

it has useful applications for lines supporting multiple modes

of propagation, and thus multiple wave functions. Prony ’s

method could be similarly modified for the multiple mode

case as was done for the single mode case.

V. PARAMETER EXTRACTION EXAMPLE

The above method is verified with the following microstrip

transmission line example. The physical structure is shown

below in Fig. 2.

The mesh was generated using a 12.5 &m x 12.5 ~m x

12.5 ~m unit cell. A time step of 23.8 fs was chosen based on

the Courant condition. Spatially, the source excites a static

field distribution to approximate the quasi-TEM dominant

mode. Temporally, the source is defined as a Blackman-Harris

window with approximate y 200 GHz of bandwidth. Several

voltages and currents were monitored along the line, with a

uniform spacing of 5 cells or 62..5 ~~m between points. Fig. 3

shows selected time signatures from this data.

50 -r
— FDTD Corrected – – -VSWR
------- FDTD Uncorrected

130
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(b)

Fig. 7. Corrected and uncorrected transmission line parameters, (a)

Impedance and ABC VSWR, (b) Effectwe perrmttlwty and ABC VSWR.

Apart from minor degradation due mostly to physical geo-

metric dispersion, these signals appear to be identical with a

uniform delay progressing along the line. The magnitude and

phase spectra of these signals are given in Figs, 4 and 5.

As expected, the magnitudes are approximately equal, and

the phases have progressively steeper slopes. The transmission

line parameters are readily extracted from this data using the

outlined technique. Fig, 6 compares these parameters to those

obtained using Hewlett-Packard’s FEM solver, HFSS [6].

These plots indicwe strong agreement between the FDTD

and FEM approaches. It is worth mentioning that the compu-

tational run times for each solver are on the same order of
magnitude, A 2-D FEM solver is fast and efficient: however,

to produce the same frequency resolution as FDTD, several

frequencies need to be calculated. The final point to make with

this example is the necessity of correcting for errors caused

by reflections. These reflections produce standing waves on

the transmission line. One obvious consequence is that the

impedance is no longer independent of position on the line.

Fig. 7 below compares these parameters to the parameters

calculated with no standing-wave correction.

As can be seen in Fig. 7(a), the uncorrected impedance

oscillates around the corrected value as frequency changes.

Note that as the VS WR improves, the uncorrected impedance
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more closely matches the corrected value. Similar effects can

be seen in the effective permittivity in Fig. 7(b).

VI. CONCLUSION

A simple algorithm for extracting transmission line pa-

rameters has been introduced. This method has been shown

to be quite general and powerful, and considerably easier

to implement than other techniques. The method can be

derived from physical or mathematical aspects, using either the

transmission line equations or Prony’s method, respectively,

This method was also generalized to S-parameter extraction,

specifical [y for reciprocal and symmetrical two-port networks.

Generalization to similar problems was also suggested. Finally,

the algorithm was verified on a microstrip line selected from

the literature [3], The transmission line parameters for this

geometry were accurately extracted and compared to results

from a finite element simulation,
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