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Parameter Extraction and Correction for

Transmission Lines and Discontinuities Using
the Finite-Difference Time-Domain Method

Mark A. Schamberger, Stevan Kosanovich, and Raj Mittra, Life Fellow, IEEE

Abstract— The finite-difference time-domain (FDTD) method
is useful for performing broadband characterization of uniform
transmission lines and discontinuities, Modeling a geometry often
requires the implementation of an absorbing boundary condition
(ABC). When this is the case, numerical reflections from the
ABC’s will add significant error to the calculated transmission
line or scattering (S) parameters. This paper introduces a sim-
ple post-processing algorithm for extracting these parameters
and correcting for numerical reflection error. Furthermore, this
method is shown to have a unique relationship to Prony’s method.
Practical application and limitations of this technique are also
discussed. Finally, the impedance and propagation constant of a
miscrostrip line are calculated using this method.

I. INTRODUCTION

PPLICATION of the finite-difference time-domain
(FDTD) method [1] to calculate transmission line and
scattering (S) parameters provides broadband frequency
information in a single simulation. This paper first focuses
on analysis of a uniform cross-section line, and then extends
the approach to computing S-parameters for an arbitrary
discontinuity. Modeling a uniform line in the time-domain
involves creating a two-dimensional (2-D) rectangular mesh
for the transverse cross section and extruding the mesh in the
longitudinal direction. Next, a TEM or quasi-TEM mode is
excited on the structure. The voltage and current along the
line are then calculated from the time-domain fields. Practical
application of this standard technique necessitates the use of an
absorbing boundary condition (ABC). Even if the cross section
is closed (PEC and PMC boundaries only), it is still necessary
to terminate the line with an ABC. Most ABC’s are derived
by making an approximation to an outward-propagating wave
equation using the electromagnetic field data in neighboring
cells around each boundary node. Although this approach
works well, residual reflections do arise from these ABC’s.
This paper utilizes the standard first order Mur ABC [2] due to
its simplicity, reasonable performance, and general acceptance.
The ABC reflections give rise to standing waves on a trans-
mission line, rather than a traveling wave in a single direction.
In order to correct for such errors, it is necessary to separate
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the standing wave into forward and backward traveling wave
components. Other techniques have been suggested in the past
[3]-[41, but are more complicated than the algorithm presented
below. The method used in [3] involves computation of Fourier
series and iterative solution of a nonlinear matrix equation
to calculate the ABC reflection. The approach used in [4]
is similar to the one presented below, but involves matrix
inversion. The method developed here only assumes that the
voltage and current on a transmission line are a superposition
of TEM waves. The reflection is calculated in closed form,
involving no matrix equations. As will be evident, this method
is very general and has direct application to computing S-
parameters.

II. THEORY

The derivation for the error correction is a very straightfor-
ward manipulation of the transmission line equations. Assume
that the voltage and current at any point on a transmission line
are calculated from an FDTD simulation, and then Fourier
transformed into the frequency domain. At any frequency,
these quantities can be represented by the following equation:

f@) = fo = c1u” + cou™ . 1

The variable f is either voltage or current, x is distance
along the transmission line, ¢; and ¢» are the coefficients for
the positive and negative traveling waves, and u is the base of
the complex wave function, ¢~7, Sampling at three uniform
points with spacing d on the transmission line produces three
equations in three unknowns, which are v, c1, and cg

fo=ci+c (2a)
fi= clud +cou? (2b)
fo = cluzd + Cz’u—Qd. 2¢)

Eliminating ¢; and co in (2¢) and simplifying yields the
following quadratic in u¢

wiofotfza g ?3)

Ji
The constant term of one in this equation implies that the
roots are reciprocals of one another. This agrees with physical

intuition since we expect two waves that have mutually
reciprocal wave functions. The two solutions are given in (4)
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The wave coefficients, ¢; and ¢;. can be expressed in terms
of u as follows:

- d

o = Jo= vt - J; L (52)
— 4

=Dl (sb)

Note that these two equations yield the same set of coef-
ficients regardless of which root is selected for performing
the calculations. This is evident from the reciprocal nature of
the two roots and the high degree of symmetry in (5a)—(5b).
Note that the data plane for fy is the phase reference for
the coefficients. Determining a sense of direction (forward
or backward) depends on the propagation constant and the
assumed time convention.

This derivation can now be applied to calculating the
transmission line parameters of an arbitrary uniform line using
the following procedure. First, apply the above procedure
independently to the voltage and current signals at three
regular points on the line. Examination of the sign of the
imaginary part of the exponent determines the direction of
wave propagation. The complex line impedance is given by
the ratio of the voltage to current for the forward traveling
wave, or the negative of this ratio for the backward traveling
wave

V. Vv + "
j— _+ CU — “_C_U_' (6)

7 = = —— = —
L I f o

A more accurate criteria for computing impedance is to
take the ratio using the set of voltage and current coefficients
with the larger overall magnitude, and toggle the sign of the
impedance such that the real part is positive. The propagation
constant is somewhat more difficult to extract since 1t involves
taking the natural log of a complex number. It is easier
to separately calculate the real and imaginary parts of the
complex propagation constant. The attenuation constant is
readily found from the u? term as follows:

_ |Re{ln ud}|
o= y .

The absolute value sign makes this calculation independent
of root selection. The phase constant is calculated in a similar
manner as shown below:

(7a)

_ [In{lnwu?}] + 27n
= y .

The 27n term is neoessary to account for the branch cut
of the complex log function. The phase constant is linear with
frequency and zero at dc. The correct value of n can be tracked
by using an initial value of zero and incrementing it by one
every time the branch cut is crossed. Since the branch cut
for the complex log function occurs at the negative real axis,
crossings can be indicated by a sign change in the imaginary
part of In(u?). The direction of the sign change depends on
the root selection. A wave function of the form e~ ¢ crosses
the branch cut from negative to positive imaginary part, while
e™? crosses from positive to negative. Fortunately, this issue
can usually be ignored by proper selection of the spacing d.

Jo}

(7b)
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As long as fd is bound by 0 and «, a branch cut is not
encountered. This implies the following constraint on d

< T ™ _ Ymm
e = ﬂmax 27(/'71[1in 2

The periodicity of voltage and current along a transmission
line every half wavelength dictates using a maximum d of a
quarter wavelength in order to guarantee a nonsingular system
of equations in (2a)—(2c). Therefore, a proper choice of the
spacing d eliminates the branch cut problem. The optimum
value of d is obviously an eighth of a wavelength. Finally,
the complex propagation constant can then be expressed as
follows:

d

(8)

_ [Re{lnw?}| [Im{lnu?}
The RLGC parameters are readily computed from ~ and Z
using the relations

9)

R+ jwl =~7
G+ gwC =~/Z.

(10a)
(10b)

This method is easily extended to the calculation of scat-
tering parameters, since that basically involves breaking a
signal into positive and negative directed wave components.
This avoids running an additional simulation to compute the
incident voltage or current signal.

For an arbitrary N-port network, one column of an S-
Matrix can be computed using a single FDTD simulation.
The excitation is applied at a single port in the device. Using
the outlined technique, the incident and reflected signals are
computed at the excited port, as well as the transmitted signals
at the other ports. This is the common approach to calculating
S-parameters. The extraction technique eliminates the need
for an extra FDTD simulation to compute the incident signal.
This efficient procedure is very similar to the one presented in
[4], but note that neither method corrects for reflections from
boundaries when calculating S-parameters. A general method
for performing such corrections is not easily derived. However,
a good approximation utilizing the above technique can be
developed for symmetrical, reciprocal two-port devices. First
consider the following one-port example. The voltage on a
transmission line can be expressed as

e—"y:l

Viz) = ZoVs

= G iz 1o Fgrle—%d(eﬂz +Tre™ %) (11)

where the S and I subscripts refer to the source and load
respectively. Equation (11) assumes that the load is at z = 0
and the source is at z = —d. Note that the ratio of the
reflected to incident waves is the load reflection coefficient,
and it is independent of source mismatch. This implies that
the extraction procedure outlined above will work exactly
for characterizing uniform transmission lines and one-port
discontinuities. In this case, one imperfect ABC represents
source mismatch, and the other imperfect ABC defines the load
reflection coefficient. This same line of reasoning is applicable
to an arbitrary two-port network as shown in Fig. 1.
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Generalized two-port network.
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Fig. 1.

First-order approximations for the line voltage at each port
can be expressed as follows:
Vl(Zl) = (1 + I‘lslle_z"“d] )6‘7121
+ (8118—27“11 (1 -+ F13116*271d1)
+ 1"25125216‘2’)’1111 6—272dz)6+7121

[ Z
VQ(ZQ) = 22—?5216_%[11 (1 + F15116_2“’1d1

+ I‘Zszze—z’mdz )e'—’yzzz
Zo2

+ 2255(5516—wldlpze—272d2)6+n2zQ_ (12b)

First-order implies the inclusion of all terms involving
ABC reflection coefficients of order one. Using the outlined
extraction method, the constants in the following generic
representation can be computed:

Vl(zl) .___c‘li'e'—’\/121 + Cl—e‘f")’lzl

Va(za) = cfe %2 4 ¢y et

(12a)

(13a)
(13b)

Equations (12a)-(12b) and (13a)-(13b) imply the following
conditions on these constants:

Z
c;“e‘z'“dlSll + 02_6'71‘1‘ \/ -2%512 =cy (14a)
+o—v1d1 ZOlS = So0 = + 14b
cie 20;21—%02 22 =c5. (14b)

Assuming symmetry and reciprocity, the full S-matrix can
be derived from (14a—14b) as shown:

CTC]-_Z()Q — C;Ci Z()l
(i 2e=2n b Zog ~ (c5)2 20

o+
S12 =821 =V Zo1 Zo2

S11 =82 = (15a)

cfes e~ 7dL _ cfc;e"“”dl
(cf )2e=2md Zoy — (c3 )2 Zor
(15b)

Although S-parameter calculations are not as susceptible to
ABC refiections as transmission line parameters, this approach
proves to be superior to the standard technique especially for
broadband frequency analysis. Note that a similar procedure
using currents could also be derived. Additionally, more
sophisticated procedures could be applied to better character-
ize the boundary reflections, thus improving this calibration
procedure.

III. APPLICATION

The above procedure has proven to be simple to implement
in software, has provided fast accurate results, and has general
applicability to similar and more advanced types of problems.
The best way to gain experience with this technique is to
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experiment with different ways of performing these calcula-
tions. For example, the impedance can be calculated with the
dominant traveling wave, or from the reflected wave. In this
case, it is not recommended that the reflected wave be used
in the calculation since ratios of small magnitude numbers are
numerically less accurate. Based on detailed investigation, the
following suggestions are offered.

For best results in the time domain, spatially excite the
line with the dominant TEM or quasi-TEM mode as well as
possible. Use a smooth temporal excitation, such as a Gaussian
pulse or Blackman-Harris window, allowing enough iterations
for the fields to settle to their initial unexcited state. Remove
the inherent half-cell spatial separation between voltage and
current by averaging. Account for the half-time step difference
between £ and H by using the appropriate scaling factor
of e*iwAt/2 Before performing a Fourier transform into the
frequency domain, remove any residual dc offset in the voltage
and current time signatures. Since the offset is usuvally not
constant, subtract a linear approximation to this offset. In other
words, subtract from it a line passing through the first and
last data points. This amounts to rotating the time signature
toward the axis by the arctangent of the slope of the linear
offset. Although this offset is usually quite small, it is a good
practice to remove it [5]. The voltage and current signatures
are ready to be transformed into the frequency domain via
a fast Fourier transform (FFT). Conservative handling of the
time domain data helps ensure a smooth transition into the
frequency domain, and significantly improves results toward
dc. ‘

Next, the wave decomposition algorithm can be applied.
This requires at least three voltage and current samples. If
n > 3 samples are available, then the linear coefficient in
the quadratic equation (3) can be averaged over the (n — 2)
data triplets. No other modification i necessary, and one only
needs to substitute the averaged coefficient when evaluating
(4). For the purpose of calculating these roots, the current
data usually provides the best results. Using this set of roots,
the coefficients for both the voltage and current waves can be
calculated by using (52)-(5b). The roots computed from the
voltage are usually noisier than those for current, and once
again, some experimentation is necessary to determine the
better choice. The impedance can then be calculated as the
ratio of the dominant voltage and current wave coefficients
with an appropriate sign adjustment. The propagation constant
is readily calculated from (9), which is independent of the
root selection.

It should be pointed out that the method outlined above
has two practical limitations. At high frequencies, the spacing
d will become greater than a quarter wavelength making the
system of equations (2a)~(2c) potentially ill-conditioned. At
low frequencies, the spacing d becomes small compared to a
wavelength, making the system of equations increasingly ill-
conditioned. Ideally, the sampling points should be equally
spaced within a quarter wavelength at the center frequency of
analysis. An analytical approach can be employed to determine
the bandwidth over which the above calculation is well-
behaved. If bandwidth limitations arise, the simple solution is
to split the frequency band into smaller subbands and select an
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Fig. 2. Microstrip geometry.

appropriate spacing d for each subband. Obviously, the spacing

decreases for each higher frequency band. This algorithm is

clearly capable of handling most any transmission line or dis-
continuity problem at any frequency. Furthermore, this method
works well quite independent of the ABC performance, which
is the most powerful characteristic of the given formulation.

IV. RELATIONSHIP TO PRONY’S METHOD

The equations derived above have a special relationship

to Prony’s method, which is 2 more general exponential -

approximation to a function. The concept behind Prony’s
method is to approximate a function as a sum of complex
exponentials as shown below:

f@) =fo=) ol =au] + - +anul. (16
=1

Assume that the function f is known at 2n equally spaced
points which can be linearly mapped to the set of integers
z € {0,1,--+,2n — 1}. This data could be used to generate
a nonlinear system of 2n equations; however, it would be
very difficult to solve. Prony’s method simplifies this problem
by solving it in three stages: two linear and one nonlinear.
Substituting the first n data samples into (16) yields the
following linear system of n equations:

1 cee et 1 a1 fo
SR I Bl S (17
u’f’——l e .. uz_l Ay fn—l

If the elements in vector « are available, then vector a is

readily found using a matrix inversion scheme. The vector u
can be solved for as follows. Let the elements in « be the n
roots of the polynomial equation given below:

u" + ru b ut o = 0. (18)

Another linear system of n equations can be generated using
the 2n data samples and (18). The general form of this system
is as follows:

fn—l fn—Z fO , 1 fn
fo oot b5 2 Jnt1
forn—2  fan—3 a1 Tn Sfon-1

(19)

Each equation in (19) is a linear combination of f, evaluated
at different points. The first equation represents a summation
of r,, times fy,r,_1 times fi,---,r; times f,_1, and 1 times
frn- Expanding each value of f, using (16), rearranging terms,
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Fig. 3. Time signatures. (a) Voltage. (b) Current.

and applying (18) indicates that this sum adds to zero, thus
validating the first equation in (19). The other equations behave
likewise. Specifically, these sums add to zero because each
can be rearranged as follows:

fn+p + Z fn—i+p7'i

i=1
n
= Z ciuf (uf +riul ™+ b rou ) = 0.
=1
(20)

The parameter p varies from 0 to n — 1, specifying one of
the equations in (19). Since each u; is a root, (20) states that
the last term in the right summation is zero. Vector r can now
be calculated using the data samples and a matrix inversion
scheme. Using a polynomial solver, the roots of (18) can be
computed. As mentioned before, the coefficients can then be
calculated from (17). Prony’s method thus explains how to
derive an n-term exponential approximation to an arbitrary
function. Obviously, a least squares approach can be applied
to the matrix equations (17) and (19) if more than n data
samples are available.

The method presented in this paper is a special case of
Prony’s method for a 2-term (n = 2) exponential approxima-
tion in which the two roots are forced to be reciprocals. For
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Fig. 4. Magnitude spectra. (a) Voltage. (b) Current.

an exact solution (no least squares approximation), a total of
2% n = 4 samples are required, as shown in (21a)-(21d):

fo=a+ce (21a)
fi =crur + coup (21b)
fo = cruf + coul (21c)
fs =crud + cous. (21d)

The matrix equation for the ¢ vector is given as follows:

(0 w) (@)=(2)

The characteristic equation for u is the generic quadratic
23):

(22)

w2+ ru+re =0. 23)

The r vector is given by the following matrix equation:
(fl fo) 7‘1) ____(fz ]
fao i) \r2 fs

An algebraic solution for (22) through (24) is readily
obtained, and the resulting solutions for r,u, and c are as

T2 ]2 )J2 - J 2 J 1 J 3

(24)
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Fig. 5. Phase spectra. (a) Voltage. (b) Current.
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Forcing the roots u; and us to be reciprocal is equivalent
to setting 75 to 1, since in a quadratic equation the constant
term equals the product of its roots. Setting ro to 1, allows
for f3 to be solved for in terms of fo, fi, and fp. This
reduces the necessary number of samples from four to three.
Substituting f3 into 71, allows r; to be defined in terms of
fo, f1, and fo only. The resulting expression for rq is the
familiar —(fo + f2)/f1 coefficient from (3). This establishes
the relationship between Prony’s method and the method
introduced in this paper.
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Fig. 6. FDTD and FEM transmission line parameters (a) Impedance. (b)
Propagation constant

In practice. the outlined method yields better results than
Prony’s method for parameter extraction. Prony’s method has
an extra degree of freedom in the sense that the two waves
can have different propagation constants. Physics tells us that
the two waves will be identical, except that they propagate in
opposite directions. Prony’s method is emphasized here since
it has useful applications for lines supporting multiple modes
of propagation, and thus multiple wave functions. Prony’s
method could be similarly modified for the multiple mode
case as was done for the single mode case.

V. PARAMETER EXTRACTION EXAMPLE

The above method is verified with the following microstrip
transmission line example. The physical structure is shown
below in Fig. 2.

The mesh was generated using a 12.5 um x 12.5 pm X
12.5 pm unit cell. A time step of 23.8 fs was chosen based on
the Courant condition. Spatially, the source excites a static
field distribution to approximate the quasi-TEM dominant
mode. Temporally, the source is defined as a Blackman-Harris
window with approximately 200 GHz of bandwidth. Several
voltages and currents were monitored along the line, with a
uniform spacing of 5 cells or 62.5 ;ym between points. Fig. 3
shows selected time signatures from this data.
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Fig. 7. Corrected and uncorrected transmission line parameters. (a)

Impedance and ABC VSWR. (b) Effective permuttivity and ABC VSWR.

Apart from minor degradation due mostly to physical geo-
metric dispersion, these signals appear to be identical with a
uniform delay progressing along the line. The magnitude and
phase spectra of these signals are given in Figs. 4 and 3.

As expected, the magnitudes are approximately equal, and
the phases have progressively steeper slopes. The transmission
line parameters are readily extracted from this data using the
outlined technique. Fig. 6 compares these parameters to those
obtained using Hewlett-Packard’s FEM solver. HESS [6].

These plots indicate strong agreement between the FDTD
and FEM approaches. It is worth mentioning that the compu-
tational run times for each solver are on the same order of
magnitude. A 2-D FEM solver is fast and efficient: however,
to produce the same frequency resolution as FDTD. several
frequencies need to be calculated. The final point to make with
this example is the necessity of correcting for errors caused
by reflections. These reflections produce standing waves on
the transmission line. One obvious consequence is that the
impedance is no Jonger independent of position on the line.
Fig. 7 below compares these parameters to the parameters
calculated with no standing-wave correction.

As can be seen in Fig. 7(a), the uncorrected impedance
oscillates around the corrected value as frequency changes.
Note that as the VSWR improves, the uncorrected impedance
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more closely matches the corrected value. Similar effects can
be seen in the effective permittivity in Fig. 7(b).

VI. CONCLUSION

A simple algorithm for extracting transmission line pa-
rameters has been introduced. This method has been shown
to be quite general and powerful, and considerably easier
to implement than other techniques. The method can be
derived from physical or mathematical aspects, using either the
transmission line equations or Prony’s method, respectively.
This method was also generalized to S-parameter extraction,
specifically for reciprocal and symmetrical two-port networks,
Generalization to similar problems was also suggested. Finally,
the algorithm was verified on a microstrip line selected from
the literature [3]. The transmission line parameters for this
geometry were accurately extracted and compared to results
from a finite element simulation.
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